Hybrid Decompositional Verification for Discovering Failures in Adaptive Flight Control Systems
نویسندگان
چکیده
Adaptive flight control systems hold tremendous promise for maintaining the safety of a damaged aircraft and its passengers. However, most currently proposed adaptive control methodologies rely on online learning neural networks (OLNNs), which necessarily have the property that the controller is changing during the flight. These changes tend to be highly nonlinear, and difficult or impossible to analyze using standard techniques. In this paper, we approach the problem with a variant of compositional verification. The overall system is broken into components. Undesirable behavior is fed backwards through the system. Components which can be solved using formal methods techniques explicitly for the ranges of safe and unsafe input bounds are treated as white box components. The remaining black box components are analyzed with heuristic techniques that try to predict a range of component inputs that may lead to unsafe behavior. The composition of these component inputs throughout the system leads to overall system test vectors that may elucidate the undesirable behavior.
منابع مشابه
Bounded Verification of Adaptive Flight Control Systems
We formally verify a direct model-reference adaptive control (MRAC) method that is used to enable flight control in adverse conditions. We use the bounded verification approach and verify the system by introducing templates for both the assumptions and the guarantees, and using the tool QEPCAD to solve the resulting exists-forall formula. We also present results from an analysis performed on in...
متن کاملNeural Network Applications in Advanced Aircraft Flight Control System, a Hybrid System, a Flight Test Demonstration
Modern exploration missions require modern control systems that can handle catastrophic changes in behavior, compensate for slow deterioration in sustained operations, and support fast system identification. The dynamics and control of new vehicles remains a significant technical challenge. Neural network based adaptive controllers have these capabilities, but they can only be used safely if pr...
متن کاملDevelopment of Advanced Verification and Validation Procedures and Tools for the Certification of Learning Systems in Aerospace Applications
Adaptive control technologies that incorporate learning algorithms have been proposed to enable automatic flight control and vehicle recovery, autonomous flight, and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments. In order for adaptive control systems to be used in safety-critical aerospace applications, they must be proven to be highl...
متن کاملFormal Verification of Curved Flight Collision Avoidance Maneuvers
Aircraft collision avoidance maneuvers are important and complex applications. Curved flight exhibits nontrivial continuous behavior. In combination with the control choices during air traffic maneuvers, this yields hybrid systems with challenging interactions of discrete and continuous dynamics. As a case study illustrating the use of a new proof assistant for a logic for nonlinear hybrid syst...
متن کاملAdaptive Fusion of Inertial Navigation System and Tracking Radar Data
Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...
متن کامل